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The use o optimization algorithms to improve the per-
formance of reservoir engineering systems and production
operations has a long and successful history. Likewise,
optimization has been applied to seismic processing prob-
lems for many years, generally via the least-squares
method. More recently, investigations have focused on the
use of a new class of advanced optimization methods for
near-surface statics computations, velocity analysis, and
seismic inversion.

In this paper we will discuss the operation and bene-
fits of using one of these new optimization techniques—
genetic algorithms (GA). A GA can solve very large and
complex problems and overcome some shortcomings of
traditional optimization methods. As the name suggests,
the underlying model employed in a GA is based on bio-
logical genetics and Darwinian notions of adaptation to the
environment and survival of the fittest.

After describing the operation of a GA, we present
examples showing how a GA can solve a material-balance
problem in production engineering and multiple sup-
pression in seismic data processing.

Genetic algorithms. A GA is an optimization technique
that arrives at a solution using a method that crudely mim-
ics the process of evolution in biological systems. The
underlying motivation for the GA methodology is
grounded in the concept that living biological species rep-
resent optimum solutions to the problem of survival in a
hostile environment.

In a biological community, those individuals with chro-
mosomes that enable them to best survive in the environ-
ment in which they live will, on average, tend to dominate
the species and pass on their superior characteristics to the
next generation. Over many generations most individuals
in a population will acquire these good genetic character-
istics. Occasionally a mutation will occur in the genetic
material of an individual. In most instances, this mutation
is bad; but once in a while it benefits the organism. If so,
then this mutated characteristic will be passed on to sub-
sequent generations. Many optimization problems can be
formulated in terms of this evolutionary paradigm. The
values of a set of control parameters for the problem being
optimized correspond to the chromosomes in an individ-
ual. Just as each individual in a population has a unique
set of chromosomes representing one solution to the envi-
ronmental survival “problem,” one can create a “popula-
tion” of solutions each having its own unique set of values
for the control parameters. And finally, one can create new
solutions to the control problem by combining the exist-
ing population of solutions using rules borrowed from
genetics.

The high-level methodology of a simple GA is sum-
marized by the following steps:

1) Represent the variables in the problem as a string of con-
catenated numbers, called a chromosome. Collectively,
the values of the members of a chromosome are one
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4)

potential solution to the problem being optimized. In
the seismic data processing example that follows, the
unknown variables are the digital samples of a wavelet.
For illustrative purposes assume that the wavelet con-
tains five samples. The goal of the GA optimization is
to find values for each sample that satisfy some per-
formance criteria. One possible chromosome could be
written as:

[0.12] 1.04]-0.80}-0.34] 0.03]

Create a “population” of several hundred chromosomes
using a random number generator. Each five-sample
chromosome can be thought of as one individual in the
population.

[0.12] 1.04]-0.89]-0.34] 0.03]

|-0.45]0.23] -0.1 Jo.99]0.45)
*

|o:21]0.03)-0.88J0.57] 0.57|

Evaluate the fitness of each chromosome in the popu-
lation using an appropriate fitness function. This func-
tion provides a measure of how “well” a chromosome
(or wavelet) solves the problem. In the example above,
the first wavelet might have a fitness of 23.5, the sec-
ond 0.56, and so on.

Create two new “child” chromosomes by selecting two
chromosomes from the original “parent” population
and applying mutation and recombination operators.
Chromosomes are selected for mating based on their
fitness value—a chromosome with a higher fitness is
more likely to be selected than one with a lower fitness
value. A mutation operator will randomly alter the
value of one or more of the members of the chromo-
some. Recombination involves splitting two parent
chromosomes at a random location in the string and
recombining the split strings to create two “child” chro-
mosomes. In the example below, two chromosomes
from the original parent generation are selected and
“split” between the second and third numbers in the
string. The right-hand substring of each chromosome
is exchanged with the other chromosome to create two
new child chromosomes. Each new child chromosome
represents a new solution to the problem. Additional
child chromosomes are created until the population of
children equals that of the parents.
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5) Evaluate the new child chromosomes using the fitness
function. Replace the parent population by the child
population.

6) Iterate back to the fourth step above until a chromo-
some with an acceptably high fitness value is found,
then STOP.

Surprisingly this straightforward procedure will find an
excellent wavelet solution. The major strength of genetic
algorithms is that they are ideally suited for solving highly
nonlinear problems (i.e., situations where the fitness func-
tions are multimodal and have discontinuities). On aver-
age, crossover and small mutations tend to exploit the
local optima (local peaks or troughs), while larger muta-
tions tend to explore the search space (locating a different
peak or trough). Crossover is more generally a convergent
operator, while mutation has both convergent and diver-
gent properties. This combination of exploitation and
exploration is what gives the genetic algorithm its power.

Surface multiple suppression. TLE’s January 1999 issue
contained a special section on theoretical and practical
developments in the suppression of surface and interbed
multiples. Guitton and Cambois summarized one approach
to removing surface multiples using the equation:

Po(x,t) = P(x,t) — W(t)+P(x,t)* P(x,t) — W(t)=
W)« P(x,t)«P(x,t)* P(x,t) + ...

X and t are the offset distance and time, P(x,t) is the input
seismic data, Py(x,t) is the surface multiple-free data,
W-1(t) is the inverse of the seismic wavelet, and * indicates
2-D convolution. The second term of the right side sub-
tracts out first-order surface multiples, the third term
removes second-order multiples, and so on for higher
order multiples. This expression is nonlinear because the
second- and higher-order multiple terms involve two or
more convolutions with the unknown inverse seismic
wavelet, W(t).

We know P(x,t) and can easily compute the autocon-
volutions specified in each of the terms on the right of this
equation. What we need to solve for, in order to use this
equation for multiple removal, is the inverse seismic
wavelet, W(t). To do this we can use a GA and follow the
steps outlined in the last section. The chromosome for the
GA will be the digital sample values of W-i(t). In the syn-
thetic seismic data example that follows we used 21 sam-
ples at a 4-ms sample rate (rather than the five samples
that were used in the previous discussion). Initially each
sample in the chromosome is assigned a random value that
was constrained between -2 and +2; 100 chromosomes
were generated representing the initial parent population.
A fitness function is also required to evaluate the per-
formance of each chromosome solution. Since it seems
physically reasonable that the multiple-free data contain
less energy than the data containing primaries and multi-
ples, the best solution for W(t) will be the one that min-
imizes the total energy in the Py(x,t) data set.

The input data and processed output shot records are
displayed on the left and right, respectively, of Figure 1.
The genetic algorithm has attenuated the water-bottom
multiples by about 22 db. Total processing time to com-
pute the inverse seismic wavelet was less than one minute
on a Unix box.

The material-balance problem. In an oil field, oil, water,
and gas are produced from wells by the natural pressure
resulting from the weight of the overlying rocks. Because

the pressure declines as more and more fluids are taken
from the reservoir, it is common practice to reinject pres-
surized water and gas back into the reservoir to maintain
reservoir pressure. A key responsibility of a reservoir engi-
neer is to develop a comprehensive picture of the flow of
produced and injected fluids in the reservoir so that the
maximum volumes of hydrocarbons can be recovered.

“Material balance” is a software tool used by reservoir
engineers to develop and efficiently produce the hydro-
carbon reserves of a field. In order to maximize oil recov-
ery, it is necessary to know the amounts and distributions
of oil, water, and gas fluids in the reservoir at any given
time. Using the material-balance process, engineers esti-
mate the relative amounts or saturations of oil, water, and
gas in the reservoir, and pressure changes occurring in the
reservoir as a result of injecting and producing fluids.
These estimates are compared with actual field measure-
ments of reservoir pressure to assess the accuracy of the
material-balance calculation. A key constraint on this cal-
culation is the conservation of total mass of injected and
produced fluids—the so-called “material balance”—from
which the name of the procedure is derived.

The field is divided into a series of patterns centered
on producing wells with injection wells on the pattern
borders (Figure 2). A separate material-balance calculation
is done for each pattern. Because injection wells are on pat-
tern boundaries, fluids from a single injection well must
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Figure 1. Input synthetic seismic data in the window
0-1000 ms (left) and the processed output data with the
surface multiples attenuated (right).
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Figure 2. Plan view of production and injection wells
in a field. Each square consists of a group of wells
called a “pattern.” Note that injection wells can be
shared between adjacent patterns. The arrows illus-
trate the approximate flow directions of fluids in the
reservoir, the fluid moving from injectors to produc-
tion wells.
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be allocated to more than one pattern. Because of inho-
mogeneities in the reservoir rocks, the injected fluids do
not move out symmetrically in all directions, so that one
cannot assume that a quarter of the injected fluid moves
into each of the four contiguous patterns that an injection
well contributes to. The central problem in a material-bal-
ance calculation is to determine how much of the fluid
introduced into an injection well goes into each of the pat-
terns of which that injection well is a member. The differ-
ence between the total injected and produced fluids in a
pattern can be used to calculate the pressure that should
exist in that pattern. A net decrease in fluid in a pattern
results in a decrease in the pressure in that pattern; the con-
verse is also true. Current practice in the industry is to
manually “guess” the contribution of fluids from each
injection well surrounding a producer until a “reasonable”
pressure profile for all patterns in the field is achieved. This
is clearly a very labor intensive and subjective process.

Past efforts to automate this allocation process using a
least squares, linear programming approach have not been
satisfactory because of the nonlinear pressure-volume-
temperature (PVT) behavior of reservoir fluids, and the
large size of the optimization that was being attempted.
Because of these problems, we felt that a stochastic opti-
mization technique such as genetic algorithms could be
successfully applied to the material-balance procedure.

Genetic algorithm for the material-balance system. The
first task was to develop an appropriate chromosome rep-
resentation for the material-balance problem. Figure 3 is a
plan view of four injection wells and one center producer.
In this simple diagram, the fluid being injected into injec-
tion well 1 splits into four “streams” in the formation,
going to four different producing wells. For example, the
fraction of fluid flowing to the southeast could be 0.15, to
the northeast 0.37, to the northwest 0.22 and to the south-
west 0.26. Note that these four fractions, or allocation fac-
tors, must sum to 1.0. For injection well 1 we create a
chromosome representation that consists of the four frac-
tional allocations concatenated to form a string:
[0.15][0.37][0.22] [0.26]. This chromosome can be expanded
by further appending a similar four-value string that rep-
resents the four allocation factors for injection well 2. The
resulting chromosome would be: [0.15][0.37][0.22]
[0.26][0.23][0.12][0.00][0.65]. The entire chromosome is con-
structed in an analogous manner to include the allocation
factors for all injection wells and all producing wells that
we wish to consider in the optimization. The length of a
typical chromosome string for a real-world oil field prob-
lem is very long—typically 3000-7000 floating point val-
ues will need to be determined.

Because the representation we described above took far
too much computer time, we employed an alternate chro-
mosome representation for this problem. We replaced each
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Figure 3. Plan view of injectors and producer wells,
showing fluid outflow from each injection well into
the formation.
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floating-point value in the chromosome by a 10-bit binary
string equivalent. This new representation allowed us to
take advantage of a fast, powerful binary bit genetic
algorithm that reduced the convergence time to acceptable
levels.

The other key step in developing a GA solution is to
create a fitness (or cost) function to evaluate the perform-
ance of each chromosome. Our fitness function used the
sum of the squared differences between the estimated and
measured values of pattern pressure to measure the per-
formance of a chromosome. A physically reasonable con-
straint was also applied that forced the estimated allocation
factors to vary slowly with time.

Results of the material balance system. Extensive tests
were conducted using both synthetic data sets and data
from an operating field. The synthetic data studies demon-
strated that pattern pressures could be matched within a
fraction of a percent, and the allocation factors could be
matched within a few percent.

In actual field data studies, the “correct” answers for
the allocation factors are not directly known, but we can
get a feeling for the accuracy of the GA-based procedure
in terms of the matches that were obtained between the
material-balance estimates of pattern pressures and actual
field measurements of the same quantities. Most patterns
pressure matches were within + 50 psi. To achieve this level
of accuracy took 12-18 hours of computing on a high-end
SGI Unix box. By comparison, when the same material-
balance calculations are performed manually by reservoir
engineers, it takes 9-12 man-months to obtain pattern pres-
sure matches that are at best within + 200 psi.

The above system was recently transferred into oper-
ating groups of a major oil company and is in production
use. At one field it is estimated that the improved accu-
racy of the GA-based material-balance system will result
in better reservoir management practices and will ulti-
mately result in the recovery of an additional 12 000 000
barrels of oil.

Conclusions. While the examples described in this article
represent only a small sampling of existing and potential
applications of GA technology, we hope that the reader
takes away some important concepts:

e Genetic algorithm technology is not a laboratory or
academic curiosity. It can and is being applied to
serious, real-world business problems.

* GAs can be used to solve exceptionally large and
complex problems that cannot be resolved in a timely
or economic fashion using more conventional opti-
mization methods. This new technology should
encourage us to revisit old problems that have not
been successfully solved in the past.

* GAs have been applied in other areas of our indus-
try with substantial economic returns. Examples
include product scheduling at coal mines, gasoline
tanker truck, and pipeline product routing.

Suggestions for further reading. Textbooks that describe details
of the theory and implementation of genetic algorithms include
Handbook of Genetic Algorithms, edited by Davis (Van Nostrand
Reinhold, 1991), Genetic Algorithms + Data Structures = Evolution
Programs (second edition) by Michalewicz (Springer-Verlag,
1992), and Genetic Algorithms in Search, Optimization and Machine
Learning, by Goldberg (1989). E
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